学生t分布

有一个形状参数 \(\nu>0\) 支持的是 \(x\in\mathbb{{R}}\)

\begin{eqnarray*} f\left(x;\nu\right) & = & \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi\nu}\Gamma\left(\frac{\nu}{2}\right)\left[1+\frac{x^{2}}{\nu}\right]^{\frac{\nu+1}{2}}}\\ F\left(x;\nu\right) & = & \left\{ \begin{array}{ccc} \frac{1}{2}I\left(\frac{\nu}{\nu+x^{2}}; \frac{\nu}{2},\frac{1}{2}\right) & & x\leq0\\ 1-\frac{1}{2}I\left(\frac{\nu}{\nu+x^{2}}; \frac{\nu}{2},\frac{1}{2}\right) & & x\geq0 \end{array} \right.\\ G\left(q;\nu\right) & = & \left\{ \begin{array}{ccc} -\sqrt{\frac{\nu}{I^{-1}\left(2q; \frac{\nu}{2},\frac{1}{2}\right)}-\nu} & & q\leq\frac{1}{2}\\ \sqrt{\frac{\nu}{I^{-1}\left(2-2q; \frac{\nu}{2},\frac{1}{2}\right)}-\nu} & & q\geq\frac{1}{2} \end{array} \right. \end{eqnarray*}
\BEGIN{eqnarray*}m_{n}=m_{d}=\m&=&0\\ \mu{2}&=&\frac{\nu}{\nu-2}\quad\nu>2\\ \Gamma_{1}&=&0\quad\nu>3\\ \Gamma_{2}&=&\frac{6}{\nu-4}\quad\nu>4\end{eqnarray*}

哪里 \(I\left(x; a,b\right)\) 是不完全的β积分,并且 \(I^{{-1}}\left(I\left(x; a,b\right); a,b\right)=x\) 。作为 \(\nu\rightarrow\infty,\) 这种分布接近标准正态分布。

\[H\Left [X\right] =\frac{\nu+1}{2}\Left [\psi \left(\frac{{1+\nu}}{{2}} \right) -\psi \left(\frac{{\nu}}{{2}} \right) \right] +\ln\Left [ \sqrt{{\nu}} B \left( \frac{{\nu}}{{2}}, \frac{{1}}{{2}} \right) \right]\]

哪里 \(\psi(x)\) 是Digamma函数,并且 \(B(x, y)\) 是贝塔函数。

参考文献

实施: scipy.stats.t