瑞利分布

这是CHI分布的一个特例,具有 \(L=0.0\)\(\nu=2\) (一般不使用位置参数),分布方式为 \(S.\)

\BEGIN{eqnarray*}f\Left(r\Right)&=&re^{-r^{2}/2}\\ F\Left(r\Right)&=&1-e^{-r^{2}/2}\\ g\Left(Q\Right)&=&\sqrt{-2\log\Left(1-Q\Right)}\end{eqnarray*}
\BEGIN{eqnarray*}\mu&=&\sqrt{\frac{\pi}{2}}\\ \mu{2}&=&\frac{4-\pi}{2}\\ \Gamma_{1}&=&\frac{2\left(\pi-3\right)\sqrt{\pi}}{\left(4-\pi\right)^{3/2}}\\ \Gamma_{2}&=&\frac{24\pi-6\pi^{2}-16}{\left(4-\pi\right)^{2}}\\ m_{d}&=&1\\m_{n}&=&\sqrt{2\log\Left(2\Right)}\end{eqnarray*}
\[h\left[X\right]=\frac{\gamma}{2}+\log\left(\frac{e}{\sqrt{2}}\right).\]
\[\mu_{n}^{\prime}=\sqrt{2^{n}}\Gamma\left(\frac{n}{2}+1\right)\]

实施: scipy.stats.rayleigh