约翰逊·苏分布¶
有两个形状参数 \(a\in\mathbb{{R}}\) 和 \(b>0\) ,并且支持是 \(x\in\mathbb{{R}}\) 。
\BEGIN{eqnarray*}f\Left(x;a,b\Right)&=&\frac{b}{\sqrt{x^{2}+1}}\phi\left(a+b\log\left(x+\sqrt{x^{2}+1}\right)\right)\\
F\Left(x;a,b\Right)&=&\Phi\left(a+b\log\left(x+\sqrt{x^{2}+1}\right)\right)\\
g\Left(q;a,b\Right)&=&\sinh\left(\frac{\Phi^{-1}\left(q\right)-a}{b}\right)\end{eqnarray*}