折叠正态分布

如果 \(Z\) 是正常的,也是平均的 \(L\)\(\sigma=S\) ,那么 \(\left|Z\right|\) 是带形状参数的折叠法线 \(c=\left|L\right|/S\) ,位置参数 \(0\) 和比例参数 \(S\) 。这是具有单自由度和非中心性参数的非中心chi分布的特例。 \(c^{{2}}.\) 请注意, \(c\geq0\) 。折叠法线的标准形状为

\Begin{eqnarray*}f\Left(x;c\Right)&=&\sqrt{\frac{2}{\pi}}\cosh\left(cx\right)\exp\left(-\frac{x^{2}+c^{2}}{2}\right)\\ F\Left(x;c\Right)&=&\Phi\left(x-c\right)-\Phi\left(-x-c\right)=\Phi\left(x-c\right)+\Phi\left(x+c\right)-1\\ G\Left(q;c\Right)&=&F^{-1}\Left(q;c\Right)\\ m\Left(t\Right)&=&\exp\Left(\frac{t}{2}\Left(t-2c\Right)\Right)\Left(1+e^{2ct}\Right)\\ K&=&\mathm{erf}\Left(\frac{c}{\sqrt{2}}\Right)\\ P&=&\EXP\Left(-\frac{c^{2}}{2}\Right)\\ \mU&=&\sqrt{\frac{2}{\pi}}p+ck\\ \MU_{2}&=&c^{2}+1-\MU^{2}\\ \Gamma_{1}&=&\frac{\sqrt{\frac{2}{\pi}}p^{3}\left(4-\frac{\pi}{p^{2}}\left(2c^{2}+1\right)\right)+2ck\left(6p^{2}+3cpk\sqrt{2\pi}+\pi c\left(k^{2}-1\right)\right)}{\pi\mu_{2}^{3/2}}\\ \Gamma_{2}&=&\frac{c^{4}+6c^{2}+3+6\left(c^{2}+1\right)\mu^{2}-3\mu^{4}-4p\mu\left(\sqrt{\frac{2}{\pi}}\left(c^{2}+2\right)+\frac{ck}{p}\left(c^{2}+3\right)\right)}{\mu_{2}^{2}}\end{eqnarray*}

实施: scipy.stats.foldnorm